Contiene due angoli adiacenti supplementari e di conseguenza anche gli altri due angoli adiacenti sono supplementari.
α + δ = 180°
β + γ = 180°
TRAPEZIO ISOSCELE
I lati AD e BC sono detti lati obliqui e sono congruenti.
AD = BC
I due angoli adiacenti ad una base sono congruenti e di conseguenza anche gli angoli adiacenti all'altra base.
α = β γ = δ
Le proiezioni dei lati obliqui sulla base maggiore sono congruenti.
AM = NB
Le due diagonali sono congruenti.
AC = BD
Il punto di incontro O delle diagonali sta sulla retta che congiunge i punti medi delle due basi.
E' simmetrico rispetto alla retta passante per i punti medi delle basi.
Si può inscrivere in una circonferenza di centro O.
1) Costruzione del trapezio isoscele assegnata la base maggiore AB, il lato obliquo e l'altezza h.
Disegna la base AB. Costruisci la perpendicolare all'estremo A.
Con apertura di compasso uguale all'altezza h, punta in A, traccia l'arco sulla perpendicolare, punta in B, traccia l'arco in alto.
Apri il compasso AB, punta in 1, traccia l'arco che taglia il precedente in 2.
Unisci 1-2 e 2-B. La figura AB12 è un rettangolo (AB parallelo a 1-2).
Apri il compasso quanto il lato obliquo, punta in A, traccia l'arco in D, punto in B, traccia l'arco in C.
Unisci i punti ABCD, vertici del trapezio isoscele.
2) Costruzione del trapezio isoscele assegnate le due basi AB CD e l'altezza h.
Disegna la base maggiore AB. Costruisci la perpendicolare al punto medio.
Apri il compasso quanto l'altezza h, punta in M, traccia l'arco sulla perpendicolare in 1.
Apri il compasso della metà della lunghezza della base minore, punta in M, traccia due archi sulla base in 2 e 3, punta in 1, traccia la circonferenza.
Apri il compasso M-1, punta in 2, traccia l'arco in D, punta in 3, traccia l'arco in C.
Unisci i punti ABCD, vertici del trapezio isoscele.
3) Costruzione del trapezio isoscele assegnate le due basi AB CD e il lato obliquo.
Disegna la base maggiore AB. Costruisci la perpendicolare al punto medio.
Sulla perpendicolare segna un punto 1, a 4-5 cm dalla base. Apri il compasso quanto la metà della base minore, punta in M, traccia gli archi 2-3, punta in 1, traccia la circonferenza.
Apri il compasso M-1, punta in 2, traccia l'arco in 4, punta in 3, traccia l'arco in 5.
Traccia le rette passanti in 2-4 e in 3-5.
Apri il compasso quanto il lato obliquo, punta in A, traccia l'arco sulla retta in D, punta in 3, traccia l'arco sulla retta in C.
Unisci i punti ABCD, vertici del trapezio isoscele.
4) Costruzione del trapezio isoscele assegnata la base minore CD, il lato obliquo e la diagonale.
Disegna la diagonale AC.
Con apertura di compasso quanto la base minore, punta in C, traccia un arco. Apri il compasso quanto il lato obliquo, punta in A, traccia l'arco che taglia il precedente in D.
Unisci A-D e D-C.
Costruisci la parallela al lato CD passante per A.
Prolunga il lato CD. Punta il compasso in D, con apertura DA, traccia l'arco che taglia la retta in 1.
Apri il compasso 1-A, punta in 2, traccia l'arco in 3.
Disegna la retta passante per A-3 (parallela a CD), che interseca la semicirconferenza in B.
CB=DA
Unisci ABCD, vertici del trapezio isoscele.
5) Costruzione del trapezio isoscele assegnate le due basi AB e CD e la diagonale.
Disegna la base maggiore AB. Costruisci la perpendicolare al punto medio.
Segna il punto 1 sulla perpendicolare a 4-5cm dalla base. Apri il compasso metà della base minore, punta in M, traccia gli archi in 2 e 3, punta in 1, traccia la circonferenza.
Apri il compasso M-1, punta in 2, traccia l'arco in 4, punta in 3, traccia l'arco in 5.
Apri il compasso quanto la diagonale, punta in A, traccia l'arco sulla retta in C, punta in B, traccia l'arco sulla retta in D.
Unisci ABCD, vertici del trapezio isoscele.
6) Costruzione del trapezio isoscele assegnata la base maggiore AB e le diagonali con il punto di intersezione O.
Disegna la diagonale AC e il punto O (intersezione).
Punta il compasso in O, con apertura O-C, traccia la circonferenza.
Punta il compasso in O, con apertura O-A, traccia la circonferenza.
Apri il compasso quanto la base maggiore AB, punta in A, traccia l'arco che interseca la circonferenza esterna in B.
Disegna il segmento BD, passante in O.
Unisci ABCD, vertici del trapezio isoscele.
7) Costruzione del trapezio isoscele, assegnata l'unità di lunghezza u:
Disegna una retta e costruisci la perpendicolare per il punto M.
Riporta, con il compasso, la misura MO=3u e NO=u.
Costruisci la parallela alla retta di base, passante per N.
Punta il compasso in S, con apertura S-N, traccia l'arco N-1, con la stessa apertura punta in T, traccia l'arco in 2.
Apri il compasso 1-N, punta in 2, traccia l'arco che taglia il precedente in 3.
Disegna la retta passante in N-3 (parallela alla retta di base).
Apri il compasso 2u, punta in N, traccia due archi che tagliano la retta in C e D.
Disegna due semiretta, a partire da D e C, che passano in O e tagliano la retta di base in A e B.
Unisci ABCD, vertici del trapezio isoscele.
8) Dato il trapezio isoscele ABCD, costruisci la circonferenza circoscritta.
Per circoscrivere un poligono è necessario costruire due assi (perpendicolare al punto medio) relativi a due lati.
Costruisci l'asse di CB.
Punta il compasso in O, con apertura O-B, traccia la circonferenza.
Come vedi, tutti i vertici del poligono appartengono alla circonferenza.
Tutti i trapezi isosceli sono circoscrivibili.
9) E' possibile inscrivere una circonferenza in un trapezio isoscele?
Per inscrivere una circonferenza in un poligono è necessario costruire le bisettrici di due angoli interni.
Costruisci la bisettrice di DAB.
Costruisci la bisettrice di ADC.
Le due bisettrici si intersecano in O.
Costruisci la perpendicolare al lato AD, passante per O.
La perpendicolare interseca il lato nel punto 3.
Punta il compasso in O, con apertura O-3, traccia la circonferenza.
Come vedi la circonferenza NON è inscritta perché il lato CB non è tangente.
Nei trapezi isosceli non è dunque MAI possibile inscrivere una circonferenza?
10) Costruzione del trapezio isoscele: lato obliquo = 4,5 cm, base maggiore = 6 cm, base minore = 3 cm.
Costruito il trapezio, prova se è possibile inscrivere una circonferenza.
Come vedi è possibile!
Perché in questo trapezio è possibile?
Perché in tutti i quadrilateri la cui somma delle misure dei lati opposti è uguale, è possibile inscrivere una circonferenza.
Disegna la base AB. Costruisci la perpendicolare all'estremo A.
Con apertura di compasso uguale all'altezza h, punta in A, traccia l'arco sulla perpendicolare, punta in B, traccia l'arco in alto.
Apri il compasso AB, punta in 1, traccia l'arco che taglia il precedente in 2.
Unisci 1-2 e 2-B. La figura AB12 è un rettangolo (AB parallelo a 1-2).
Apri il compasso quanto il lato obliquo, punta in A, traccia l'arco in D, punto in B, traccia l'arco in C.
Unisci i punti ABCD, vertici del trapezio isoscele.
2) Costruzione del trapezio isoscele assegnate le due basi AB CD e l'altezza h.
Disegna la base maggiore AB. Costruisci la perpendicolare al punto medio.
Unisci i punti ABCD, vertici del trapezio isoscele.
3) Costruzione del trapezio isoscele assegnate le due basi AB CD e il lato obliquo.
Disegna la base maggiore AB. Costruisci la perpendicolare al punto medio.
Sulla perpendicolare segna un punto 1, a 4-5 cm dalla base. Apri il compasso quanto la metà della base minore, punta in M, traccia gli archi 2-3, punta in 1, traccia la circonferenza.
Apri il compasso M-1, punta in 2, traccia l'arco in 4, punta in 3, traccia l'arco in 5.
Traccia le rette passanti in 2-4 e in 3-5.
Apri il compasso quanto il lato obliquo, punta in A, traccia l'arco sulla retta in D, punta in 3, traccia l'arco sulla retta in C.
Unisci i punti ABCD, vertici del trapezio isoscele.
4) Costruzione del trapezio isoscele assegnata la base minore CD, il lato obliquo e la diagonale.
Disegna la diagonale AC.
Con apertura di compasso quanto la base minore, punta in C, traccia un arco. Apri il compasso quanto il lato obliquo, punta in A, traccia l'arco che taglia il precedente in D.
Unisci A-D e D-C.
Costruisci la parallela al lato CD passante per A.
Prolunga il lato CD. Punta il compasso in D, con apertura DA, traccia l'arco che taglia la retta in 1.
Con la stessa apertura (DA), punta il compasso in C, traccia la semicirconferenza che taglia la retta in 2.
Disegna la retta passante per A-3 (parallela a CD), che interseca la semicirconferenza in B.
CB=DA
Unisci ABCD, vertici del trapezio isoscele.
5) Costruzione del trapezio isoscele assegnate le due basi AB e CD e la diagonale.
Disegna la base maggiore AB. Costruisci la perpendicolare al punto medio.
Segna il punto 1 sulla perpendicolare a 4-5cm dalla base. Apri il compasso metà della base minore, punta in M, traccia gli archi in 2 e 3, punta in 1, traccia la circonferenza.
Apri il compasso M-1, punta in 2, traccia l'arco in 4, punta in 3, traccia l'arco in 5.
Traccia le rette passanti in 2-4 e in 3-5.
Apri il compasso quanto la diagonale, punta in A, traccia l'arco sulla retta in C, punta in B, traccia l'arco sulla retta in D.
Unisci ABCD, vertici del trapezio isoscele.
6) Costruzione del trapezio isoscele assegnata la base maggiore AB e le diagonali con il punto di intersezione O.
Disegna la diagonale AC e il punto O (intersezione).
Punta il compasso in O, con apertura O-C, traccia la circonferenza.
Punta il compasso in O, con apertura O-A, traccia la circonferenza.
Apri il compasso quanto la base maggiore AB, punta in A, traccia l'arco che interseca la circonferenza esterna in B.
Disegna il segmento BD, passante in O.
Unisci ABCD, vertici del trapezio isoscele.
7) Costruzione del trapezio isoscele, assegnata l'unità di lunghezza u:
Disegna una retta e costruisci la perpendicolare per il punto M.
Riporta, con il compasso, la misura MO=3u e NO=u.
Costruisci la parallela alla retta di base, passante per N.
Punta il compasso in S, con apertura S-N, traccia l'arco N-1, con la stessa apertura punta in T, traccia l'arco in 2.
Disegna la retta passante in N-3 (parallela alla retta di base).
Apri il compasso 2u, punta in N, traccia due archi che tagliano la retta in C e D.
Disegna due semiretta, a partire da D e C, che passano in O e tagliano la retta di base in A e B.
Unisci ABCD, vertici del trapezio isoscele.
8) Dato il trapezio isoscele ABCD, costruisci la circonferenza circoscritta.
Per circoscrivere un poligono è necessario costruire due assi (perpendicolare al punto medio) relativi a due lati.
Costruisci l'asse di CB.
Costruisci l'asse di CD che interseca il precedente in O.
Punta il compasso in O, con apertura O-B, traccia la circonferenza.
Come vedi, tutti i vertici del poligono appartengono alla circonferenza.
Tutti i trapezi isosceli sono circoscrivibili.
9) E' possibile inscrivere una circonferenza in un trapezio isoscele?
Per inscrivere una circonferenza in un poligono è necessario costruire le bisettrici di due angoli interni.
Costruisci la bisettrice di DAB.
Costruisci la bisettrice di ADC.
Le due bisettrici si intersecano in O.
Costruisci la perpendicolare al lato AD, passante per O.
La perpendicolare interseca il lato nel punto 3.
Punta il compasso in O, con apertura O-3, traccia la circonferenza.
Come vedi la circonferenza NON è inscritta perché il lato CB non è tangente.
Nei trapezi isosceli non è dunque MAI possibile inscrivere una circonferenza?
10) Costruzione del trapezio isoscele: lato obliquo = 4,5 cm, base maggiore = 6 cm, base minore = 3 cm.
Costruito il trapezio, prova se è possibile inscrivere una circonferenza.
Come vedi è possibile!
Perché in questo trapezio è possibile?
Perché in tutti i quadrilateri la cui somma delle misure dei lati opposti è uguale, è possibile inscrivere una circonferenza.
AB + CD = AD + BC
6 + 3 = 4,5 + 4,5
Nessun commento:
Posta un commento